198 research outputs found

    The role of the cytoskeleton in cell body enlargement, increased nuclear eccentricity and chromatolysis in axotomized spinal motor neurons

    Get PDF
    BACKGROUND: When spinal motor axons are injured, the nucleolus, nucleus and cell body of the injured cell transiently increase in size, the nucleus becomes more eccentrically placed, and the organization of polyribosomes into Nissl bodies is temporarily disrupted. The mechanisms for these classical morphological responses to axotomy have not been satisfactorily explained. RESULTS: In this study we address the role of the cell body cytoskeleton in these structural changes. We show that the cytoskeleton of uninjured lumbar motor neuron cell bodies maintains nucleolar, nuclear and cell body size and nuclear position. When isolated, the relatively insoluble cell body cytoskeleton contains Nissl bodies and lipofuscin granules. After axotomy, protein labeling increases markedly and the cytoskeleton enlarges, increasing nucleolar, nuclear and cell body size, as well as nuclear eccentricity. Nearly all of the protein mass that accumulates in the cell body after axotomy appears to be added to the cytoskeleton. CONCLUSION: We conclude that axotomy causes the conjugate enlargement of the nucleolus, nucleus and cell body and increases nuclear eccentricity in spinal motor neurons by adding protein to the cytoskeleton. The change in nuclear position, we propose, occurs when cytoskeletal elements of the axon cannot enter the shortened axon and "dam up" between the nucleus and axon hillock. As a consequence, we suggest that Nissl body-free axonal cytoskeleton accumulates between the nucleus and axon, displaces Nissl body-containing cytoskeleton, and produces central chromatolysis in that region of the cell

    The role of inhibitor of apoptosis (IAP) family member survivin in prostatic disease

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Continual and recalcitrant inflammation is an extremely common condition in the human prostate and has been found to be associated with a number of prostatic diseases including prostate cancer and benign prostatic hyperplasia (BPH). While much has been described regarding prostate disease resulting from oxygen and nitrogen radicals during inflammation, proliferative mechanisms associated with repair and regeneration are less understood. The Inhibitor of Apoptosis (IAP) family member survivin has been found to be overexpressed during inflammation and associated with prostate cancer progression. Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein that is essential in activating inflammatory transcription factors. Because APE1/Ref-1 is expressed and elevated in prostate cancer, we sought to characterize APE1/Ref-1 expression and activity in human prostate cancer cell lines and determine the effect of selective reduction-oxidation (redox) function inhibition on prostate cancer cells in vitro and in vivo. Due to the role of inflammatory transcriptional activators NFĸB and STAT3 in survivin protein expression, and APE1/Ref-1 redox activity regulating their transcriptional activity, we assessed selective inhibition of APE1/Ref-1’s redox function as a novel method to halt prostate cancer cell growth and survival. Our study demonstrates that survivin and APE1/Ref-1 are significantly higher in human prostate cancer specimens compared to noncancerous controls and that APE1/Ref-1 redox specific inhibition with small molecule inhibitors APX3330 and APX2009 decreases prostate cancer cell proliferation and induces cell cycle arrest. Inhibition of APE1/Ref-1 redox function significantly reduced NFĸB transcriptional activity, survivin mRNA and survivin protein levels. These data indicate that APE1/Ref-1 is a key regulator of survivin and a potentially viable target in prostate cancer

    Coordinated induction of cell survival signaling in the inflamed microenvironment of the prostate

    Get PDF
    PURPOSE: Both prostate cancer and benign prostatic hyperplasia are associated with inflammatory microenvironments. Inflammation is damaging to tissues, but it is unclear how the inflammatory microenvironment protects specialized epithelial cells that function to proliferate and repair the tissue. The objective of this study is to characterize the cell death and cell survival response of the prostatic epithelium in response to inflammation. METHODS: We assessed induction of cell death (TNF, TRAIL, TWEAK, FasL) and cell survival factors (IGFs, hedgehogs, IL-6, FGFs, and TGFs) in inflamed and control mouse prostates by ELISA. Cell death mechanisms were determined by immunoblotting and immunofluorescence for cleavage of caspases and TUNEL. Survival pathway activation was assessed by immunoblotting and immunofluorescence for Mcl-1, Bcl-2, Bcl-XL, and survivin. Autophagy was determined by immunoblotting and immunofluorescence for free and membrane associated light chain 3 (LC-3). RESULTS: Cleavage of all four caspases was significantly increased during the first 2 days of inflammation, and survival protein expression was substantially increased subsequently, maximizing at 3 days. By 5 days of inflammation, 50% of prostatic epithelial cells expressed survivin. Autophagy was also evident during the recovery phase (3 days). Finally, immunofluorescent staining of human specimens indicates strong activation of survival proteins juxtaposed to inflammation in inflamed prostate specimens. CONCLUSIONS: The prostate responds to deleterious inflammation with induction of cell survival mechanisms, most notably survivin and autophagy, demonstrating a coordinated induction of survival factors that protects and expands a specialized set of prostatic epithelial cells as part of the repair and recovery process during inflammation

    Anti-tumor activity and mechanistic characterization of APE1/Ref-1 inhibitors in bladder cancer

    Get PDF
    Bladder cancer is the ninth most common cause of cancer-related deaths worldwide. Although cisplatin is used routinely in treating bladder cancer, refractory disease remains lethal for many patients. The recent addition of immunotherapy has improved patient outcomes; however, a large cohort of patients does not respond to these treatments. Therefore, identification of innovative molecular targets for bladder cancer is crucial. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in both DNA repair and activation of transcription factors through reduction-oxidation (redox) regulation. High APE1/Ref-1 expression is associated with shorter patient survival time in many cancer types. In this study, we found high APE1/Ref-1 expression in human bladder cancer tissue relative to benign urothelium. Inhibition of APE1/Ref-1 redox signaling using APE1/Ref-1-specific inhibitors attenuates bladder cancer cell proliferation in monolayer, in three-dimensional cultures, and in vivo. This inhibition corresponds with an increase in apoptosis and decreased transcriptional activity of NF-κB and STAT3, transcription factors known to be regulated by APE1/Ref-1, resulting in decreased expression of downstream effectors survivin and Cyclin D1 in vitro and in vivo. We also demonstrate that in vitro treatment of bladder cancer cells with APE1/Ref-1 redox inhibitors in combination with standard-of-care chemotherapy cisplatin is more effective than cisplatin alone at inhibiting cell proliferation. Collectively, our data demonstrate that APE1/Ref-1 is a viable drug target for the treatment of bladder cancer, provide a mechanism of APE1/Ref-1 action in bladder cancer cells, and support the use of novel redox-selective APE1/Ref-1 inhibitors in clinical studies. SIGNIFICANCE: This work identifies a critical mechanism for APE1/Ref-1 in bladder cancer growth and provides compelling preclinical data using selective redox activity inhibitors of APE1/Ref-1 in vitro and in vivo

    Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front.

    Get PDF
    Antitumoral immunity requires organized, spatially nuanced interactions between components of the immune tumor microenvironment (iTME). Understanding this coordinated behavior in effective versus ineffective tumor control will advance immunotherapies. We re-engineered co-detection by indexing (CODEX) for paraffin-embedded tissue microarrays, enabling simultaneous profiling of 140 tissue regions from 35 advanced-stage colorectal cancer (CRC) patients with 56 protein markers. We identified nine conserved, distinct cellular neighborhoods (CNs)-a collection of components characteristic of the CRC iTME. Enrichment of PD-1+CD4+ T cells only within a granulocyte CN positively correlated with survival in a high-risk patient subset. Coupling of tumor and immune CNs, fragmentation of T cell and macrophage CNs, and disruption of inter-CN communication was associated with inferior outcomes. This study provides a framework for interrogating how complex biological processes, such as antitumoral immunity, occur through concerted actions of cells and spatial domains

    An immune clock of human pregnancy

    Get PDF
    The maintenance of pregnancy relies on finely tuned immune adaptations. We demonstrate that these adaptations are precisely timed, reflecting an immune clock of pregnancy in women delivering at term. Using mass cytometry, the abundance and functional responses of all major immune cell subsets were quantified in serial blood samples collected throughout pregnancy. Cell signaling-based Elastic Net, a regularized regression method adapted from the elastic net algorithm, was developed to infer and prospectively validate a predictive model of interrelated immune events that accurately captures the chronology of pregnancy. Model components highlighted existing knowledge and revealed previously unreported biology, including a critical role for the interleukin-2-dependent STAT5ab signaling pathway in modulating T cell function during pregnancy. These findings unravel the precise timing of immunological events occurring during a term pregnancy and provide the analytical framework to identify immunological deviations implicated in pregnancy-related pathologies

    Landscape of coordinated immune responses to H1N1 challenge in humans

    Get PDF
    Influenza is a significant cause of morbidity and mortality worldwide. Here we show changes in the abundance and activation states of more than 50 immune cell subsets in 35 individuals over 11 time points during human A/California/2009 (H1N1) virus challenge monitored using mass cytometry along with other clinical assessments. Peak change in monocyte, B cell, and T cell subset frequencies coincided with peak virus shedding, followed by marked activation of T and NI< cells. Results led to the identification of C038 as a critical regulator of plasmacytoid dendritic cell function in response to influenza virus. Machine learning using study-derived clinical parameters and single-cell data effectively classified and predicted susceptibility to infection. The coordinated immune cell dynamics defined in this study provide a framework for identifying novel correlates of protection in the evaluation of future influenza therapeutics
    corecore